
DOI: 10.1007/s10910-005-9031-3
Journal of Mathematical Chemistry, Vol. 39, No. 2, February 2006 (© 2005)

A discussion on the Einstein–Podolski–Rosen (EPR)
effect∗ in a unique wavefunction quantum mechanical

framework

Ramon Carbó-Dorca1,2
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A unique wavefunction, constructed according to the original Einstein–Podolski–
Rosen (EPR) description, is used here to analyze the behavior of two equal non-inter-
acting quantum systems: S(1) and S(2).The results show that the EPR paradox, which
will be referred as EPR effect in this work, always appears in this theoretical context.
When the expectation value of a Hermitian operator is sought, it can yield two differ-
ent values, when measured on S(1) or S(2). However, the EPR effect disappears if the
wavefunction is chosen symmetric or antisymmetric by interchanging the S(1) and S(2)
coordinates. The same EPR effect appears when the expectation value of a state selec-
tor projection operator is computed on S(1) or S(2), but it disappears within a sym-
metric or antisymmetric EPR wavefunction form. On the other hand, the action of
the selectors over the EPR wavefunction provide images on EPR system S(1) or S(2)
which could be different, so the EPR effect persists except if, similarly as in the statis-
tical case, a wavefunction constructed with a symmetric or antisymmetric superposition
with respect the EPR system coordinates is used. Thus, with appropriate wavefunction
choices, in statistical expectation value measures and non-statistical selector images as
well, the EPR effect could not persist.

KEY WORDS: Einstein–Podolski–Rosen paradox, wavefunction structure, expectation
values, inward matrix product, selectors

1. Introduction

In a recent work [1] the so-called Einstein–Podolski–Rosen (EPR) para-
dox [2], which will be hereafter called the EPR effect, was analyzed from the

∗This second paper on EPR paradox is also expressly dedicated to the memory Professor Ein-
stein, in order to celebrate the 100th anniversary of the first paper on relativity theory, but also to
commemorate the 75 anniversary of the publication of EPR paradox, thus, as before, Professors
Podolski and Rosen are also included in the homage.
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point of view of the classical quantum mechanical theory of statistical mea-
sures, while admitting the EPR framework based on non-interacting states of
two equal systems and two non-commuting operators. The result was such that
the EPR effect was not present in this statistical quantum measurement way.
The present discussion follows a different pathway using a unique wavefunction
instead of employing the two equivalent functions of the original EPR formu-
lation. The present analysis shows that, when studying the statistical expectation
values as in the first study, the EPR effect can be overridden by appropriate sym-
metry choices of the EPR wavefunction.

The present work starts taking into account a similar framework as
previously admitted, but keeping the mathematical development within a unique
operator and one wavefunction only. It will be shown that one can arrive to
some stage where the EPR effect appears. Then, the results of the present paper
will illustrate how to override the EPR effect explicitly, taking into account the
symmetry or antisymmetry of the wave function coefficients, when choosing a
statistical expectation value frame. All the same, it will be studied how is not
difficult to overcome the EPR effect too when measuring a single state projec-
tion operator, a selector, by means of the same quantum mechanical expectation
value technique and using the unique EPR wavefunction. However, when choos-
ing the selector as a non-statistical projector over the unique EPR wavefunction,
the EPR effect becomes persistent as in the original EPR formulation and other
manipulations shall be devised to get through the EPR effect.

2. The starting points

First, this discussion will take into account the following basic points in
order to set up the EPR framework [2]:

(1) Two equal submicroscopic systems S(1) and S(2) have interacted in the
past and now are in a non-interacting stationary state. One can refer to
these systems as EPR systems.

(2) Some Hermitian operator A, which can act on both EPR systems, is
known.

(3) The secular equation of the operator A is known and can be written for
both EPR systems as:

Aak(i) = αkak(i); (i = 1, 2) , (1)

where:

{αk} ∧ {ak (i)} ; (i = 1, 2) (2)
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are the eigenvalues and eigenfunctions for the operator A. By the sym-
bol (i) ; (i = 1, 2) there are represented the variables describing both
EPR systems.
Therefore, the eigenfunctions of the operator A form an orthonormal-
ized set in the following sense:

〈
ak | al

〉
=
∫

D

a∗
k (1) al (1) dV1 =

∫

D

a∗
k (2) al (2) dV2 = δkl. (3)

(4) A known complete set of functions, which can have the role of coeffi-
cients in a EPR wavefunction development, can be related to EPR sys-
tems S(1) and S(2) and written as:

G = {gk (1)} ∧ F = {fk (2)} , (4)

where the symbols (1) and (2) refer to the variables of the EPR systems.
One can name this set (4) as the EPR coefficient function set.

3. The EPR wavefunction

One can easily write the EPR wavefunction for the joint non-interacting
systems, just using the information of the four previous points as stated in the
previous paragraph. The EPR wavefunction will be referred to the eigenfunctions
of system S(1) as a basis set, with the EPR coefficient functions of S(2) of equa-
tion (4) acting as coordinates as well:

� (1, 2) =
∑

k

fk (2) ak (1). (5)

Taking into account that the role of both systems coordinates could be exchanged
without any further difficulty.

Now, as the eigenfunctions of the operator A are to be considered a complete
set too, then this property can be used to express the EPR coefficient function set
F in the usual way, with the eigenfunctions of the operator A acting in turn as a
basis set and some specific coordinates for each EPR coefficient function:

∀k : fk (2) =
∑

l

clkal (2), (6)

therefore, the EPR wavefunction (5) can be expressed as:

� (1, 2) =
∑

k

[∑
l

clkal (2)

]
ak (1) =

∑
k

∑
l

clkal (2) ak (1). (7)

Collecting the EPR coefficients into a matrix: C = {clk}, which will be called
hereafter the EPR coefficient matrix, and ordering the eigenfunctions in a vec-
tor structure like:
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a (i) = {
ap (i)

}
(i = 1, 2) , (8)

then, the EPR wavefunction expression above can be written, using the complete
sum1 of the inward matrix product (IMP)2 of two factors (3), composed by the
EPR coefficient matrix and the tensor product of the vectors (8), as:

� (1, 2) = 〈C ∗ (a (2) ⊗ a (1))〉 .

4. Normalization of EPR wavefunction

Normalization of the EPR wavefunction (7) provides a first insight into the
nature of the EPR coefficient matrix C. The Euclidian norm of the EPR func-
tion (7) has the following form:

〈� | �〉 =
∑
k,l

∑
p,q

c∗
lkcqp

〈
al

∣∣ aq

〉 〈
ak

∣∣ ap

〉
,

which, taking into account the orthonormalization relationships (3), transforms
into:

〈� | �〉 =
∑
k,l

∑
p,q

c∗
lkcqpδlqδkp =

∑
k,l

|clk|2 = 1.

Thus, the set of squared modules of the EPR coefficients C correspond to
a discrete probability distribution, which constitutes a well-known property in
quantum mechanical wavefunction description [4, 5]. This property of the EPR
coefficients is nicely written in terms of the complete sum of the IMP of the EPR
coefficient matrix and its complex conjugate: C∗:

D = C∗ ∗ C = {
dlk = |clk|2

} → 〈D〉 = 1. (9)

Such a matrix manipulation transforms the EPR coefficient matrix into a posi-
tive definite valued one, an element of a semispace unit shell [6, 7].

5. Expectation values of the EPR wavefunction under the operator A

Having set the trivial relationship involved in the EPR wavefunction nor-
malization, in a first instance, the expectation value of the operator A acting

1The complete sum of a matrix A = {
aij

}
is defined as: 〈A〉 = ∑

i,j aij
2The inward matrix product (IMP) of two matrices {A, B} is defined as: P = A ∗ B → ∀i, j : pij =
aij bij .
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over the system S(1) can be written as:

〈�| A (1) |�〉 =
∑
k,l

∑
p,q

c∗
lkcqp

〈
al

∣∣aq

〉 〈ak| A
∣∣ap

〉

=
∑
k,l

∑
p,q

c∗
lkcqpδlqαp

〈
ak

∣∣ap

〉

=
∑
k,l

∑
p,q

c∗
lkcqpδlqαpδkp

=
∑
k,l

c∗
lkclkαk =

∑
k,l

|clk|2 αk.

(10)

Now, collecting the eigenvalue spectrum of the operator A into a diagonal
matrix:

A = Diag (αk) , (11)

then, the expectation value of the same operator can be written as a trace of the
matrix product:

〈A (1)〉 = T r
(
CAC+) , (12)

where C+ is the conjugate-transpose of the EPR coefficient matrix, or using the
previous definition of the diagonal matrix (11), the matrix (9) and the complete
sum of their IMP one arrives at the equivalent description:

〈A (1)〉 = 〈D ∗ A〉 .

On the other hand, the application of the operator A over the system S(2), pro-
duces:

〈�| A (2) |�〉 =
∑
k,l

∑
p,q

c∗
lkcqp 〈al| A

∣∣aq

〉 〈
ak

∣∣ap

〉

=
∑
k,l

∑
p,q

c∗
lkcqpδkpαq

〈
al

∣∣aq

〉

=
∑
k,l

∑
p,q

c∗
lkcqpδkpαqδlq

=
∑
k,l

c∗
lkclkαl =

∑
k,l

|clk|2 αl

a slightly different result from the previous one, as it can be seen when the cor-
responding trace matrix expression is employed:

〈A (2)〉 = T r
(
C+AC

)
. (13)

Expression (13) can be also expressed in terms of the matrix (9), like in the pre-
vious case:

〈A (1)〉 = 〈A ∗ D〉 .
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Thus, as in general there is no reason forbidding that expressions (12) and (13)
provide each one a different result, a new form of the EPR effect appears in this
case, when comparing both expectation values.

Apparently, then, when using the normalized wave function (7), a different
result could be obtained when the measure of the same observable, represented by
the Hermitian operator A, is performed in system S(1) or S(2).

It seems, therefore, that the EPR objection, which was originally based on
an observable single measure wavefunction collapse [4] in a two wavefunction rep-
resentation [2] framework, can be extended to a statistical measure of the observ-
able within a unique wavefunction representation.

An analysis of this situation follows, in order to obtain information on
under which circumstances the encountered EPR effect will disappear or persist.

6. Conditions for solving the EPR effect using the equality

〈
A (1)

〉
=
〈
A (2)

〉
.

At first instance one can try to see how the EPR effect can be surmounted in the
case of the preceding paragraph, as it has been already performed in the original
EPR framework statistical case, as discussed in the preceding paper [1].

The equality between expressions (12) and (13), can be sought by using the
equality:

∑
k,l

|clk|2 αk =
∑
k,l

|clk|2 αl →
∑
k,l

|clk|2 (αl − αk) = 0. (14)

The precedent result permit that the following situations may be worth of study:

(1) The equality (14) will hold trivially in the case when the spectrum of the
operator A is completely degenerate. Thus, the diagonal matrix contain-
ing its eigenvalues is a scalar matrix:

A = αI → ∀k, l : αk = αl = α.

This scenario is hardly interesting, as an objective EPR system exper-
imental situation, having such a characteristic it is not so common in
practice, as far as one can imagine when dealing with atoms and mol-
ecules. Obviously, in this situation, the EPR coefficient matrix can have
arbitrary elements.

(2) When, on the contrary than in the situation above, the spectrum of
the Hermitian operator is completely non-degenerate, one can write the
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equality (14), as:
∑

k

∑
l<k

|clk|2 (αl − αk) = −
∑

k

∑
l>k

|clk|2 (αl − αk)

=
∑

k

∑
l>k

|clk|2 (αk − αl) =
∑

k

∑
l<k

|ckl|2 (αl − αk),

which implies:
∑

k

∑
l<k

(|clk|2 − |ckl|2
)
(αl − αk) = 0

and therefore, the following equalities will hold:

∀k > l : |clk|2 = |ckl|2 . (15)

On the other hand, the relationships (15) constitute a set of conditions,
usually fulfilled by both Hermitian and Skewhermitian matrices. For
instance, Hermitian matrices fulfill:

∀k, l : clk = c∗
kl → |clk|2 = c∗

lkclk = cklclk = cklc
∗
kl = |ckl|2

and in the same manner, Skewhermitian matrices fulfill:

∀k, l : clk = −c∗
kl → |clk|2 = c∗

lkclk = (−ckl) clk

= (−ckl)
(−c∗

kl

) = cklc
∗
kl = |ckl|2 .

Thus, one can obtain the equality of both expectation values when the
spectrum of the Hermitian operator is completely non-degenerate and
the EPR coefficient matrix is Hermitian or Skewhermitian.
Each one of the conditions above implies, in turn, that the EPR wave
function has to be symmetric or antisymmetric with respect exchange of
the EPR systems coordinates:

� (1, 2) = ±� (2, 1)

a result which coincides with the usual quantum mechanical description
of bosons and fermions, respectively.

(3) When the spectrum of the operator A appears possessing some degen-
erate states, the situation it is not so clear as in the previous points and
one shall study this situation separately. Perhaps, one can provisionally
say that using the EPR coefficients arbitrariness within the degenerate
part of the spectrum, then, one can consider taking a coherent Hermi-
tian or Skewhermitian coefficient set as in the non-degenerate part.

Then, this resulting situation appears to be similar to the one encountered in
the previous work. The EPR effect disappears within the scenario of a statisti-
cal measure of a quantum mechanical expectation value, when boson or fermion
symmetry properties of the EPR wavefunction are taken into account.
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7. The EPR wavefunction collapsed state measurement and the persistence
of the EPR effect

7.1. Selectors

The Hermitian operator A, when one takes into account its spectral decom-
position in terms of the eigenvalues and eigenfunctions, can have the form:

A =
∑

s

αs |as〉 〈as | =
∑

s

As,

moreover, the set of Hermitian operators {As} can be interpreted as the ones
which select, by projection of the EPR wavefunction, a given system state. One
can name them selectors.

The selectors As act over the EPR wavefunction selecting the sth state mea-
sure of the operator A, when applied to system S(1):

As (1) [�] =
∑
k,l

clkAs (1) [ak (1)] al (2)

=
∑
k,l

clkαsas (1) δskal (2)

=
(∑

l

clsal (2)

)
αsas (1)

= αsfs (2) as (1) (16)

and when applied to system S(2):

As (2) [�] =
∑
k,l

clkak (1) As (2) [al (2)]

=
∑
k,l

clkak (1) αsas (2)δsl

=
(∑

k

cskak (1)

)
αsas (2)

= αsgs (1) as (2) (17)

by using the next expression to define similar EPR functions of type (4) for sys-
tem S(1), in the manner of equation (6) for system S(2):

gs (1) =
∑

k

cskak (1) . (18)

The only way to assure that the EPR effect will not be present in this case is to
assume that for every selector:

∀s : fs (x) = gs (x) , (19)
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or what is the same:

∀s ∧ k : cks = csk. (20)

Such a property implies that the EPR coefficient matrix shall be symmetric.
This situation seems different from the previous result when the expectation
values of the Hermitian operator were studied, but resembles the EPR result
for the case when selectors of two Hermitian non-commuting operators are
applied over the EPR wavefunction represented in the basis of each operator
[2].

Conditions (19) or (20) constitute a quite particular constraint, which has
not always to be fulfilled. In this sense the EPR effect persists, when selector
images of the EPR wavefunction over each one of the EPR systems are obtained,
unless the EPR coefficient matrix becomes a symmetrical one. This will be true
whenever such a symmetric EPR coefficient matrix can be employed to construct
the EPR wavefunction.

One can also try to obtain information about this case from the Gramian
of the EPR coefficient functions. For such a purpose, the norms and scalar prod-
ucts of two EPR coefficient functions shall be evaluated, that is:

∀s : 〈fs | fs〉 =
∑

k

∑
l

c∗
kscls 〈ak | al〉

=
∑

k

c∗
kscks =

∑
k

|cks |2 = [
C+C

]
ss

(21)

with also:

∀s : 〈gs | gs〉 =
∑

k

∑
l

c∗
skcsl 〈ak | al〉

=
∑

k

c∗
skcsk =

∑
k

|csk|2 = [
CC+]

ss

(22)

and provided the scalar product of both functions is performed like:

∀s : 〈fs | gs〉 =
∑

k

∑
l

c∗
kscsl 〈ak | al〉 =

∑
k

∑
l

c∗
kscslδkl

=
∑

k

c∗
kscsk = [

CC∗]
ss

.

Then, the Gramian of the two functions can be, thus, written:

∀s : � (fs; gs) =
(∑

k

|cks |2
)(∑

k

|csk|2
)

−
(∑

k

c∗
kscsk

)2
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this is the same as:

∀s : � (fs; gs) =
(∑

k

∑
l

c∗
kscksc

∗
slcsl

)
−
(∑

k

∑
l

c∗
kscskc

∗
lscsl

)

=
∑

k

∑
l

c∗
kscsl

(
cksc

∗
sl − cskc

∗
ls

)
.

So, the Gramian expression shows that both EPR coefficient functions can be
linearly independent in general, therefore a different result of the action of the
selector over the EPR function has to be expected.

7.2. Symmetric–antisymmetric wavefunction linear combination

In order to have even more information on the behavior of the selectors,
suppose one constructs the mixed wavefunction:

� (1, 2) = N (� (1, 2) ± � (2, 1)) ,

where the constant N is a normalization constant. The action of the selector on
system S(1) will be:

As (1) [�] = N(As (1) [� (1, 2)] ± As (1) [� (2, 1)]) .

One already has computed the first term of the expression above, with the result:

As (1) [� (1, 2)] = αsfs (2) as (1)

and the second term can be easily computed too, as:

As (1) [� (2, 1)] =
∑
k,l

clkAs (1) [al (1)] ak (2)

=
∑
k,l

clkαsas (1) δslak (2)

=
(∑

l

cskak (2)

)
αsas (1)

= αsgs (2) as (1)

so, the net result becomes:

As (1) [� (1, 2)] = Nαs (fs (2) ± gs (2)) as (1) .

At the same time, for the same selector acting on system S(2) it will be obtained:

As (2) [� (1, 2)] = Nαs (gs (1) ± fs (1)) as (2) .
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So, in this situation, while employing a linear superposition of the initial func-
tion and its counterpart with the coordinates of the EPR systems exchanged, it
is found that the result of the selectors action will be equivalent for the symmet-
ric composition, but a change of sign will appear in the antisymmetric combina-
tion case. This can be related to the conditions of the equality of the complete
Hermitian operator expectation values discussed in the previous section.

7.3. Selector expectation values

Even with this previous finding, it will be interesting to see how quantum
mechanical statistics will affect the selector EPR effect.

The expectation value of a given selector, when applied to system S(1)
appears to be expressible as:

〈
As (1)

〉
=
〈
�

∣∣∣As (1)

∣∣∣�
〉
=
∑
k,l

∑
p,q

c∗
lkcqp

〈
al

∣∣ aq

〉〈
ak

∣∣∣As

∣∣∣ap

〉

=
∑
k,l

∑
p,q

c∗
lkcqpδlqαs

〈
ak | as

〉〈
as

∣∣ ap

〉

=
∑
k,l

∑
p,q

c∗
lkcqpδlqαsδksδsp

=
∑

l

c∗
lsclsαs =

(∑
l

|cls |2
)

αs.

In case that the same selector is used over the system S(2), then one obtains the
following expectation value:

〈As (2)〉 = 〈�| As (2) |�〉 =
∑
k,l

∑
p,q

c∗
lkcqp 〈al| As

∣∣aq

〉 〈
ak

∣∣ ap

〉

=
∑
k,l

∑
p,q

c∗
lkcqpαs 〈al|as〉

〈
as

∣∣aq

〉
δkp

=
∑
k,l

∑
p,q

c∗
lkcqpαsδlsδsqδkp

=
∑

k

c∗
skcskαs =

(∑
k

|csk|2
)

αs.

Both expectation value expressions cannot further simplify and become identi-
cal, unless one assumes that in the two situations the sum of the squared EPR
coefficient modules has the same constant value.

Thus, in principle, a similar problem as in the statistical measure of the
whole operator appears, when one employs selectors instead. Therefore, one can
consider this result as the equivalent appearance, in a unique EPR wavefunction
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framework, of the EPR effect [2]. It can be consequently stated that: the expecta-
tion value of the same selector, when measured in both EPR systems, apparently
can provide different results.

The analysis of the previous situation, as resumed in equation (15), can be
used here to obtain the same weight for both expectation values and, thus, the
same result for both state selector measures.

In order that this could be accomplished, it is necessary the following equal-
ity hold:

∀s :
∑

k

|csk|2 =
∑

k

|cks |2. (23)

This is equivalent to consider that the two EPR coefficient functions, being con-
structed over an orthonormalized basis set, have the same Euclidian norm value
(see equations (21) and (22)). That is:

∀s :
〈
fs | fs

〉
=
〈
gs | gs

〉
.

Equation (23) above will be true when the EPR coefficient matrix becomes
Hermitian or Skewhermitian, as has been discussed before, when the complete
Hermitian operator was used to find the expectation value.

One should consider also the constraint of dealing with a matrix, simply
computed as the matrix D, defined in equation (9), previously supposing noth-
ing on his construction structure, but taking into account the additional property
to have the sums of row elements equal to the sums of column elements. This
property holds for symmetric matrices like the matrix D. It must be noted here
that one cannot further manipulate the matrix D as to become a double stochas-
tic matrix or even a simpler column or row stochastic one [8], because this will
destroy its symmetry and normalization conditions (9), that is: 〈D〉 = 1.

8. Conclusions

One can deduce from the results of this paper that, Hermitian and
Skewhermitian EPR coefficient matrices, a situation associated to bosons and
fermions, respectively, override the EPR effect in statistical expectation values of
a Hermitian operator acting on both EPR systems. However, the case of a selec-
tor operator is more complicated.

The EPR effect persists in the expectation values of the selector case, except
if the EPR coefficient matrix is Hermitian or Skewhermitian, as in the full opera-
tor study. Then, the structure of the EPR coefficient transformed matrix becomes
a symmetric matrix and the selector expectation values become equal on both
EPR systems.
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In any case, the persistence of the EPR effect, when considering the images
of the selectors over the EPR wavefunction over both systems seems as solid as
in the original EPR two-operator case.

One can conclude, from the point of view of quantum statistical measures,
that the EPR effect can be overridden if some specific, physically reasonable,
constraints are present into the EPR coefficient matrix and thus into the EPR
wavefunction.

Nevertheless, it seems evident that similar constraints as in the statistical
case can be found, when the selector wavefunction images are considered. Appar-
ently two different results could be obtained when considering the reaction of
EPR system S(1) or S(2) in front of the selector action over the EPR wavefunc-
tion. However, a linear symmetric or antisymmetric mixture of the original EPR
function with its counterpart having the EPR systems coordinates exchanged
provide a selector action on both EPR systems with equivalent results.
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